Three-Dimensional Structure of a DNA Repair Enzyme, 3-Methyladenine DNA Glycosylase II, from Escherichia coli

نویسندگان

  • Yuriko Yamagata
  • Masato Kato
  • Kyoko Odawara
  • Yoshiteru Tokuno
  • Yoko Nakashima
  • Nobuko Matsushima
  • Kohei Yasumura
  • Ken-ichi Tomita
  • Kenji Ihara
  • Yoshimitsu Fujii
  • Yusaku Nakabeppu
  • Mutsuo Sekiguchi
  • Satoshi Fujii
چکیده

The three-dimensional structure of Escherichia coli 3-methyladenine DNA glycosylase II, which removes numerous alkylated bases from DNA, was solved at 2.3 A resolution. The enzyme consists of three domains: one alpha + beta fold domain with a similarity to one-half of the eukaryotic TATA box-binding protein, and two all alpha-helical domains similar to those of Escherichia coli endonuclease III with combined N-glycosylase/abasic lyase activity. Mutagenesis and model-building studies suggest that the active site is located in a cleft between the two helical domains and that the enzyme flips the target base out of the DNA duplex into the active-site cleft. The structure of the active site implies broad substrate specificity and simple N-glycosylase activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amplified expression of the tag+ and alkA+ genes in Escherichia coli: identification of gene products and effects on alkylation resistance.

We have constructed plasmids which overproduce the tag and alkA gene products of Escherichia coli, i.e., 3-methyladenine DNA glycosylases I and II. The tag and alkA gene products were identified radiochemically in maxi- or minicells as polypeptides of 21 and 30 kilodaltons, respectively, which are consistent with the gel filtration molecular weights of the enzyme activities, thus confirming the...

متن کامل

Release of normal bases from intact DNA by a native DNA repair enzyme.

Base excision repair is initiated by DNA glycosylases removing inappropriate bases from DNA. One group of these enzymes, comprising 3-methyladenine DNA glycosylase II (AlkA) from Escherichia coli and related enzymes from other organisms, has been found to have an unusual broad specificity towards quite different base structures. We tested whether such enzymes might also be capable of removing n...

متن کامل

Nucleotide sequence of the tag gene from Escherichia coli.

We have determined the complete nucleotide sequence of the tag gene, encoding 3-methyladenine DNA glycosylase I from Escherichia coli. From the nucleotide sequence it is deduced that the tag enzyme consists of 187 amino-acids and has a calculated molecular weight of 21.1 kdaltons. The tag enzyme is unusually rich in cysteine (8 residues) with a cluster of three consecutive cysteines near the C-...

متن کامل

DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG).

DNA glycosylases help maintain the genome by excising chemically modified bases from DNA. Escherichia coli 3-methyladenine DNA glycosylase I (TAG) specifically catalyzes the removal of the cytotoxic lesion 3-methyladenine (3mA). The molecular basis for the enzymatic recognition and removal of 3mA from DNA is currently a matter of speculation, in part owing to the lack of a structure of a 3mA-sp...

متن کامل

Interplay between base excision repair activity and toxicity of 3-methyladenine DNA glycosylases in an E. coli complementation system.

DNA glycosylases carry out the first step of base excision repair by removing damaged bases from DNA. The N3-methyladenine (3MeA) DNA glycosylases specialize in alkylation repair and are either constitutively expressed or induced by exposure to alkylating agents. To study the functional and evolutionary significance of constitutive versus inducible expression, we expressed two closely related y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 86  شماره 

صفحات  -

تاریخ انتشار 1996